Single Table Queries: Student Database
1. Display the student information

SELECT *
FROM Student; 
Here * stands for all attributes. The following examples show how to get just some attributes.

2. Display all student numbers and names

SELECT student_no, name 
FROM Student; 
3. What is the name, total number of units completed and coordinator number of student no 12345678?

SELECT name, total_units as completed, coord_no 
FROM Student
WHERE student_no=12345678; 
Notice how the column is renamed, i.e. the total_units column will be displayed as completed
4. What is the name and number of units student no 12345678 needs to graduate? Assume that a student needs 240 credit points.

SELECT name, 240 - Total_Units as Left 
FROM Student
WHERE student_no=12345678; 
5. Which student numbers in HIT232 received HDs?

SELECT * 
FROM Grade 
WHERE course_no='HIT232' AND grade='HD'; 
6. Which students have completed less than 100 credit points or have coordinator no 45?

SELECT * 
FROM Student 
WHERE coord_no=45 OR total_units <100;
7. Find all coordinators whose employee number starts with ASI?

SELECT * 
FROM Coordinator 
WHERE Employee_No LIKE 'ASI%'; 
Where clauses can have conditions in which a string is compared with a pattern to see if it matches. The phrase used is:

column LIKE pattern
or 
column NOT LIKE pattern 

In the pattern % is used to match any string while _ matches any character 

8. Display all coord numbers form the student table

SELECT Coord_no 
FROM Student; 
Tables and results of SQL queries allow duplicates. The only exception is the set operations introduced in the third module. 

SQL does not automatically eliminate duplicates as it is an expensive operation to implement (consider how it might be implemented). Further in some instances duplicate results may be required by the user or other SLQ statements (e.g. aggregate functions such as COUNT).

There is a keyword ALL that specifies duplicates should not be removed. As this is the default ALL is not usually used on the SELECT line. The following example is equivalent to above.

SELECT ALL Coord_no
FROM student; 
9. Display all unique coord numbers from the student table

To eliminate duplicates use the word DISTINCT.
SELECT DISTINCT Coord_no 
FROM Student;
10. Which students have completed between 120 and 250 units? Order by the total units

SELECT * 
FROM Student
WHERE total_units BETWEEN 120 AND 250
ORDER BY total_units ASC; 
The ASC was not necessary. To order in descending order the word DESC is used.

Data can be organised by one of the ORDER BY clause. The default if in ascending order and can be specified on multiple columns where the first column listed is the primary sequence, the second column is secondary etc. 

11. Find the average no of units students with Coord_No 23 have completed

SELECT AVG(Total_Units) 
FROM Student
WHERE Coord_no = 23; 

12. How many students does Coord_No 23 look after?

SELECT COUNT(*) 
FROM Student
WHERE Coord_No=23;
SQL default behaviour in not removing duplicates works well in these examples. If duplicates need to be removed the DISTINCT keyword can be used to count the number of distinct values in a column. 

13. How many coordinators are there that are currently advising students?

SELECT COUNT(DISTINCT Coord_No) 
FROM Students;
This will return the number of coordinators that appear in the Student table. Note this is different to the query asking how many coordinators there are - for this query you could simply COUNT the number of rows in the Coordinator table.

14. Find the number of students for each coord no.

SELECT coord_no, COUNT(*) 
FROM Student
GROUP BY coord_no; 
The aggregation functions can also be applied to subgroups of rows using the GROUP BY clause. The table that results from the SELECT-FROM-WHERE is grouped according to the values of the attributes in the GROUP BY clause and any aggregation is applied only within each group.[image: image1][image: image2][image: image3][image: image4][image: image5][image: image6]
