Bipalium kewense

Publication EENY-049, Entomology and Nematology Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.

Reproduced under the terms for educational use, March 2004.
Land Planarians, *Bipalium kewense* Moseley and *Dolichoplana striata* Moseley

P. M. Choate and R. A. Dunn

Introduction

Esser (1981) discussed land planarians in Florida. He stated that in almost every month of the year specimens of grey to brown long flat worms with several dark stripes running down the back were submitted to the Nematology Bureau for identification and information concerning their biology. These worms were land planarians included in the phylum Platyhelminthes. Almost all specimens submitted belonged to the genus *Bipalium*.

The land planarian *Bipalium kewense* Moseley was first described from a greenhouse at Kew Botanical Gardens near London, England, in 1878. This species is believed to be native to Indo-China, and has been found commonly in American greenhouses since 1901.

Figure 1. A land planarian, *Bipalium kewense* Moseley.

Figure 2. Adult flatworm, *Dolichoplana striata* Moseley.
Distribution

B. kewense exhibits a disjunct distribution pattern. In Australia and in the USA a similar pattern of occurrence is evident. Records also include Barbados, Colombia, Costa Rica, El Salvador, Indonesia, Madagascar, Malaysia, Mauritius, Mexico, Puerto Rico, Tahiti, Taiwan and Zimbabwe. The species appears to be dispersed with rooted plants. The natural range of *B. kewense* extends from Vietnam to Kampuchea, possibly extending to Malaysia. Elsewhere it has been introduced by humans. Land planarians thrive in high temperature and humidity, thus they are widely distributed in tropical and subtropical areas. They have been detected in natural habitats in Florida, Louisiana, and most recently in Georgia, Texas, South Carolina and California. They have been reported in greenhouses in Alabama, California, Georgia, Illinois, Kentucky, Massachusetts, Mississippi, New Jersey, New York, North Carolina, Ohio, Oklahoma, South Carolina, and Tennessee. Land planarians have not previously been detected in mountain or desert areas. However, in October 2003, a sample of land planarians was brought to the Cochise County, Arizona, Cooperative Extension Service office for identification. Chochise County is a high desert (4000 ft+) grassland area between the Chihuahuan and Sonoran deserts (J. Gay, personal communication). This species is spreading northward along the Atlantic Coast and is able to endure freezing when in protected sites such as under boards. (Hyman 1940.)

The widespread occurrence of land planarians is a result of horticultural practices and dispersion of potted plants in commerce. In tropical and subtropical areas, once planarians are established in a greenhouse they disperse to the adjacent environment.

Description and Identification

Land planarians are soft, bilaterally symmetric, acoelomate, dorsally-ventrally flattened worms, 3 to 50 cm long by 0.2 to 0.5 cm wide. They lack a respiratory and circulatory system, a skeleton, and an anus. Heads of many land planarians are expanded lunate or tapering to a blunt point. Eyespots may be present on the head. Colors of Florida species range from greenish-grey to brown with dark narrow stripes on the dorsal side. A mouth, which also serves as an anus, is present near mid-body on the ventral surface. A protrusible muscular plicate pharynx serves as a feeding organ and is attached to a three-branched intestine. The space between organs is filled with parenchyma. Circular and longitudinal muscles are present. A cerebral ganglion serves as a brain, innervating a ladder-shaped nervous system. Excretion of fluid wastes is accomplished with a primitive proto-nephridial system (Esser 1981).

Hyman (1943) described *Dolichoplana striata* Moseley. "Length up to 120mm. Form very elongated and flattened. Ground color yellowish brown with 6 longitudinal dark stripes, paired median, lateral, and marginal. Median stripes are very narrow and may be absent in young specimens. Lateral stripes are very conspicuous, black, sharply defined, beginning at level of eyes and continuing to posterior tip. Marginal stripes are less dark, diffuse, ill defined, fading away posteriorly. Creeping sole white, bordered on each side by diffuse pigmentation."

Bipalium kewense is recognized by its pale color, dorsal dark median line, dark patch in neck region, and expanded lunate head. This species may attain lengths up to 30 cm. (Chandler 1974).
Life History

Reproduction and Development

Reproduction is principally by fragmentation at the posterior end. Lateral margins pinch in about 1 cm from the tail tip. Severance occurs when the posterior fragment adheres to the substrate and the parent worm pulls away. The posterior fragment is motile immediately, and within seven to 10 days a lightly pigmented head begins to form. One to two fragments are released each month.

Eggs are deposited in 0.6 to 9.7 cm cocoons that are bright red when deposited. Within 24 hours the cocoons turn black. Planarians emerge in approximately 21 days.

Habitat

Because land planarians are photo-negative during daylight hours and require high humidity, they are found in dark, cool, moist areas under objects such as rocks, logs, in debris, or under shrubs, and on the soil surface following heavy rains. Land planarians are also found in caves, but are rare in rural sites. Movement and feeding occur at night. High humidity is essential to survival. They can survive desiccation only if water loss does not exceed 45 percent of their body weight. Land planarians are most abundant in spring and fall.

Dundee and Dundee (1963) reported *B. kewense* as being plentiful enough in New Orleans to be used as demonstration material in zoology classes.

Locomotion

Land planarians glide smoothly on the substrate by the action of powerful, closely spaced cilia in a special medial ventral strip (creeping sole), on a thin coat of mucus secreted on the substrate by glands opening into the creeping sole. Land planarians that migrate on plants or objects above the ground sometimes regain the ground by lowering themselves down by a string of mucus.

Nutrition

Land planarians devour earthworms, slugs, insect larvae, and are cannibalistic. Prey are located by chemoreceptors located in a single ciliated pit under the head or in a ciliated ventral groove. Struggling prey are held to the substrate and entangled in slimy secretions from the planarian. The pharynx is protruded from the mouth and into the prey. Food is reduced to small particles prior to entering the gastrovascular cavity. The food particles are taken by epithelial cells in amoeboid fashion and formed into food vacuoles. Planaria store food in digestive epithelium and can survive many weeks shrinking slowly in size without feeding. They are capable of utilizing their own tissues such as reproductive tissue for food when reserves are exhausted.
Other animals rarely devour land planarians, since surface secretions appear distasteful, if not toxic. Protozoans, including flagellates, ciliates, sporozoans, and nematodes have been detected in land planarians. Because of their cannibalistic habit, land planarians may be their own worst enemy.

Planarian Enemies

Other animals rarely devour land planarians, since surface secretions appear distasteful, if not toxic. Protozoans, including flagellates, ciliates, sporozoans, and nematodes have been detected in land planarians. Because of their cannibalistic habit, land planarians may be their own worst enemy.

Economic Importance

Planarians are voracious predators on earthworms, and two species, *B. kewense* and *Dolichoplana striata* Moseley, have been reported as nuisances in the southern USA in earthworm rearing beds. (Hyman, 1954; Dunn, pers. observ.1997) Two additional flatworm species, *Artioposthia triangulata* and *Geoplana sanguinea*, were accidentally imported to Ireland and England. They were reported as being capable of eradicating entire earthworm populations on farms. In greenhouses, although some collectors believe they might damage plants, they are considered harmless.

Survey and Detection

Figure 3. Planarian attacking earthworm. A. Planarian B. Earthworm. (From Esser 1981).

Figure 4. Planarian, *Bipalium kewense* Moseley, feeding on earthworm.
In daylight look for flat worms (sometimes with expanded heads) under rocks and logs only where cool damp areas exist. Slime trails are telltale evidence of land planarians, but might also indicate slugs or snails.

In worm beds, look for land planarians attached to earthworms by mucus membranes. Collected specimens rarely survive when sent alive to Gainesville via bus or mail. Specimens should be placed in a vial of 70% alcohol or 4% formaldehyde.

Disease Transmission

None reported.

Management

None reported.

Selected References

Moseley, H. N. 1877. Notes on the structures of several forms of land planarians, with a description of two new genera and several new species, and a list of all species at present known. Microsc. J. 7: 273-292.

Footnotes

1. This document is EENY-049, one of a series of Featured Creatures from the Entomology and Nematology Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Published: August 1998. Revised: November 2003. This document is also available on Featured Creatures Website at http://creatures.ifas.ufl.edu. Please visit the EDIS Website at http://edis.ifas.ufl.edu. Additional information on these organisms, including many color photographs, is available at the Entomology and Nematology Department WWW site at http://entnemdept.ifas.ufl.edu/.

2. P. M. Choate and R. A. Dunn, Entomology and Nematology Department, University of Florida, Cooperative Extension Service, Institute of Food and Agricultural Sciences, Gainesville, 32611.

The Institute of Food and Agricultural Sciences (IFAS) is an Equal Employment Opportunity - Affirmative Action Employer authorized to provide research, educational information and other services only to individuals and institutions that function without regard to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations. For information on obtaining other extension publications, contact your county Cooperative Extension Service office.

Florida Cooperative Extension Service / Institute of Food and Agricultural Sciences / University of Florida / Larry R. Arrington, Interim Dean

Copyright Information

This document is copyrighted by the University of Florida, Institute of Food and Agricultural Sciences (UF/IFAS) for the people of the State of Florida. UF/IFAS retains all rights under all conventions, but permits free reproduction by all agents and offices of the Cooperative Extension Service and the people of the State of Florida. Permission is granted to others to use these materials in part or in full for educational purposes, provided that full credit is given to the UF/IFAS, citing the publication, its source, and date of publication.